

Hubertus Wald Tumorzentrum Universitäres Cancer Center Hamburg

Ein Kompetenznetzwerk des UKE

Therapie älterer Patienten mit AML

Prof. Dr. Walter Fiedler

Hubertus Wald universitäres Cancer Center

UKE

The incidence of AML as a function of age; 2000–2005 Surveillance Epidemiology and End Results (SEER) Data

Klepin H D , and Balducci L The Oncologist 2009;14:222-232

Change in overall survival with time.

Burnett A et al. JCO 2011;29:487-494

Unfavorable tumor biology is more frequent in the elderly.

Biologic characteristic	Examples	Proportion of elderly AML affected	References
Unfavorable cytogenetic abnormalities	Chromosome 5 or 7 abnormality	22%-50%	[2, 5, 9, 13, 22]
	Complex karyotype		
Multidrug resistance phenotype	MDR1 overexpression	58%-71%	[13]
Preceding hematologic disease	Myelodysplastic syndrome	21%-34%	[21, 22]

Distribution of the European LeukemiaNet genetic groups in younger (A) and older (B) adults with primary acute myeloid leukemia.

Mrózek K et al. JCO 2012;30:4515-4523

Distribution of Genetically Defined WHO Categories Based on Fast Biomarker Screening

AMLSG-BiO 2011-2013 [NCT01252485, n=1977; median age 65 years (18-92)]

Auswahl älterer Patienten für die Intensive Chemotherapie

- "Biologisches" Alter
- Comorbiditäten
- Organfunktionen
- Karyotyp
- Molekulare Veränderungen
- Scores

Response-Raten nach "7+3" Chemotherapie bei Patienten mit AML über 60 Jahre mit normalem Karyotyp

	NPM-1 wt	NPM-1 mut	р
Alter 60-69 Jahre	N=27	N=52	
CR Rate	59%	83%	0.031
Alter ≥ 70 Jahre	N=38	N=31	
CR Rate	39%	87%	<0.01

(A) Disease-free survival and (B) overall survival of patients age ≥ 60 years with cytogenetically normal de novo acute myeloid leukemia according to NPM1 mutation status

Becker H et al. JCO 2010;28:596-604

Outcome of Patients with CBF Leukemias over an age of 60 Years

Prébet T et al. JCO 2009;27:4747-4753

Intensive Therapie für ältere Patienten mit Hochrisikomerkmalen

CPX-351 is a liposomal formulation of cytarabine and daunorubicin encapsulated at a 5:1 molar ratio

Fixed molar ratio maintained in human plasma for at least 24 hours after final dose¹

Drug exposure maintained for 7 days¹

Selective uptake by leukemic vs normal cells in bone marrow of leukemia-bearing mice²

Reprinted with permission. © 2011 American Society of Clinical Oncology. All rights reserved. Feldman EJ et al. First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. *J Clin Oncol.* 2011;29(8):979–985.

CPX-351 Phase III Study Design Randomized, open-label, parallel-arm, standard therapy-controlled

AML, acute myeloid leukemia; CMML, chronic myelomonocytic leukemia; CR, complete response; CRi, CR with incomplete platelet/neutrophil recovery; ECOG PS, Eastern Cooperative Oncology Group performance status; HMA, hypomethylating agents; MDS, myelodysplastic syndrome.

1. World Health Organization. WHO Classification of Tumours of Haematopoitic and Lymphoid Tissues. Swerdlow S et al (ed). Lyon, IRAC Press, 2008.

Clinical Results of Phase 3 Study

	CPX-351 (n=153)	7+3 (n=156)		
	Median Survival ir	n Months (95% CI)	Hazard Ratio	P value
Event-Free Survival	2.53 (2.07, 4.99)	1.31 (1.08, 1.64)	0.74 (0.58, 0.96)	0.021
Remission Duration	6.93 (4.60, 9.23)	6.11 (3.45, 8.71)	0.77 (0.47, 1.26)	0.291
Deaths ≤ 60 Days [*]	13.8%	21.8%		
			Odds Ratio	P value
CR+CRi	47.7%	33.3%	1.77 (1.11, 2.81)	0.016
НСТ	34.0%	25.0%	1.54 (0.92, 2.56)	0.098

*Kaplan-Meier estimate.

Exploratory Analysis by Age: Overall Survival

- Age 60–69 years, hazard ratio of 0.68 (95% CI: 0.49, 0.95)
- Age 70–75 years, hazard ratio of 0.55 (95% CI: 0.36, 0.84)

Überlebensvorteile auch in weiteren Subgruppen sichtbar

Subgroup		CPX-351		7+3	
	n	Median OS, mo	n	Median OS, mo	Hazard ratio (95% CI) for death
Age					· · · · · · · · · · · · · · · · · · ·
60-69 years	96	9.63	102	6.87	0.68 (0.49, 0.95)
70-75 years	57	8.87	54	5.62	0.55 (0.36, 0.84)
Type of AML					
Therapy-related AML	30	12.17	33	5.95	0.48 (0.26, 0.86)
AML with antecedent MDS or CMML	82	7.38	86	5.95	0.70 (0.50, 0.99)
MDS with prior HMA exposure	50	5.65	55	7.43	0.98 (0.64, 1.51)
MDS without prior HMA exposure	21	15.74	19	5.13	0.46 (0.21, 0.97)
CMML	11	9.33	12	2.28	0.37 (0.14, 0.95)
de novo AML with MDS karyotype	41	10.09	37	7.36	0.71 (0.42, 1.20)
Cytogenetic risk at screening	J				
Favorable/intermediate	71	14.72	63	8.41	0.64 (0.41, 0.99)
Unfavorable	72	6.60	83	5.16	0.73 (0.51, 1.06)
Baseline FLT3 mutation statu	IS				
FLT3 wild type	116	9.33	120	5.98	0.64 (0.47, 0.87)
FLT3 mutation	22	10.25	21	4.60	0.76 (0.34, 1.66)
Overall HMA experience					
All patients with prior HMA exposure ^a	62	5.65	71	5.90	0.86 (0.59, 1.26)
					0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

CPX-351 better

7+3 better

Verlängerte Phase der Neutropenie führt nicht zur Erhöhung der Therapie-bedingten Mortalität

	ANC ≥	500/uL	Thromb ≥ 50,0	ozyten 00/uL
	Vyxeos	7 + 3	Vyxeos	7 + 3
Nach der 1. Induktion	n=58	n=34	n=58	n=34
Median (Tage)	35	29	36.5	29
Nach der 2. Induktion	n=15	n=18	n=15	n=18
Median (Tage)	35	28	35	24

Aufgrund einer AML-Progression
Aufgrund von unerwünschten Ereignissen
Andere Gründe

Safety Profile

• Grade 3–4 AEs and AEs resulting in death were generally similar between arms

 Differences in infection and bleeding events were associated with delayed recovery from myelosuppression in the CPX-351 arm

	60–69		70-	-75
	CPX-351	7+3	CPX-351	7+3
Events	n=96	n=102	n=57	n=54
MedDRA Preferred Term	n (%)	n (%)	n (%)	n (%)
Any grade 3–4 AE	85 (89)	91 (93)	50 (88)	45 (85)
Any serious AE*	49 (51)	36 (37)	22 (39)	22 (42)
Febrile neutropenia	7 (7.3)	5 (5.1)	4 (7.0)	3 (5.7)
Sepsis	6 (6.3)	2 (2.0)	2 (3.5)	2 (3.8)
Respiratory failure	4 (4.2)	7 (7.1)	3 (5.3)	1 (1.9)
Acute respiratory failure	4 (4.2)	1 (1.0)	1 (1.8)	2 (3.8)
Ejection fraction decreased	3 (3.1)	5 (5.1)	3 (5.3)	1 (1.9)
Pneumonia	3 (3.1)	3 (3.1)	3 (5.3)	1 (1.9)
Disease progression	1 (1.0)	3 (3.1)	1 (1.8)	1 (1.9)
Нурохіа	1 (1.0)	3 (3.1)	1 (1.8)	0
Pulmonary edema	0	1 (1.0)	1 (1.8)	2 (3.8)
Any AE resulting in death	8 (8.3)	11 (11)	6 (11)	11 (21)

*Specific serious AEs occurring in ≥2% of patients in either age group are listed. MedDRA, Medical Dictionary for Regulatory Activities.

Anteil der Transplantierten konnte unter CPX-351 deutlich erhöht werden, besonders bei den über 70-Jährigen

2-sided P = 0.09840% 34.0% (n = 52) 35% 25.0% 30% Patients (%) (n = 39) 25% 20% 15% 10% 5% 0% CPX-351 7+3 (n = 153) (n = 156) HCT

	HSCT Baseline Characteristics	CPX-351 n (%)	7+3 n (%)
Patients who went to transplant		52 (34)	39 (25)
Age	60–69	36 (70)	33 (85)
	70–75	16 (31)	6 (15)
PS	0-1	48 (92)	37 (95)
	2	4 (8)	2 (5)
Karyotype	Intermediate	27 (52)	18 (46)
	Poor	21 (40)	19 (49)
	Unknown	4 (8)	2 (5)
Strata	tAML	11 (21)	9 (23)
	MDS with prior HMA	14 (27)	14 (36)
	MDS without prior HMA	7 (14)	5 (13)
	CMML	3 (6)	0 (0.0)
	de novo	17 (33)	11 (28)
Transplanted in CR/CRi		39 (75)	24 (62)
Transplanted in NR (no response)		8 (15)	3 (8)

Survival Landmarked from Time of Transplant

• CPX-351 median OS not reached vs 10.25 months for 7+3

HR of 0.46 favoring CPX-351 (P=0.0046)

Cox proportional hazards HR, including transplant as a timedependent covariate, was 0.51 (95% CI, 0.35–0.75; *P*=0.0007), favoring CPX-351

Venetoclax with low-dose cytarabine induces rapid, deep, and durable responses in previously untreated older adults with AML ineligible for intensive chemotherapy

Andrew H. Wei¹, **Stephen Strickland**², Jing-Zhou Hou³, Walter Fiedler⁴, Tara L. Lin⁵, Roland B. Walter⁶, Anoop Enjeti⁷, Wan-Jen Hong⁸, Brenda Chyla⁹, Qin Qin⁹, Relja Popovic⁹, Kaffa Fakouhi⁹, John Hayslip⁹, Gail J. Roboz¹⁰

¹The Alfred Hospital and Monash University, Melbourne, VIC, Australia; ²Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; ³University of Pittsburgh Medical Center Cancer Center, Pittsburgh, PA, USA; ⁴Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ⁵University of Kansas Medical Center, Kansas City, KS, USA; ⁶Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; ⁷Calvary Mater Hospital Newcastle, Waratah, NSW, and School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia; ⁸Genentech, Inc., South San Francisco, CA, USA; ⁹AbbVie, Inc., North Chicago, IL, USA; ¹⁰Weill Cornell Medical College, New York, NY, USA

> American Society of Hematology (ASH) – 60th Annual Meeting San Diego, CA, USA ● December 2, 2018

284

Enrollment Criteria

KEY INCLUSION CRITERIA	KEY EXCLUSION CRITERIA	
AML by histological confirmation	Prior treatment for AML, except	
Age ≥60 vears	hydroxyurea	
	Prior treatment with HMA for preexisting	
Ineligible for standard induction therapy	myeloid disorder	
with cytarabilite and antimacycline	Active CNS involvement	
ECOG score 0–2 for patients ≥75 years	WBC count >25 ×10 ⁹ per liter	
ECOG score 0–3 for patients 60-74 years	Infection with HIV, HBV, or HCV	
Adequate renal and hepatic function		

Abbreviations: CNS, central nervous system; ECOG, European Collaborative Oncology Group; HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; NCCN, National Comprehensive Cancer Network; WBC, white blood cell

Patient Characteristics

Characteristic	N=82	Cytogenetics and Mutations	N=82*
Median age (range), years	74 (63–90)	Cytogenetics, n (%)*	
Male, n (%)	53 (65)	Intermediate risk	49 (60)
ECOG Performance Score, n (%)		Poor risk	26 (32)
0	12 (15)	No mitosis	7 (8)
1	46 (56)	Somatic mutations, n (%) ⁺	
2	23 (28)	TP53	10 (14)
3	1 (1)	FLT3	16 (23)
Baseline bone marrow blasts, n (%)		IDH1/2	18 (25)
<30%	27 (33)	NPM1	9 (13)
≥30 - <50%	18 (22)	* Cytogenetics risk groups defined in 2014 N	NCCN guidelines, v 2.0
≥50%	36 (44)	the number of patients with da	ta (n=71)
Secondary AML, n (%)	40 (49)		
Prior HMA treatment, n (%)	24 (29)	Median treatment duration:	4.2 months
CYP3A inhibitor use, n (%)	41 (50)	Median number of therapy	cycles: 5

AML, acute myeloid leukemia; ECOG, Eastern Cooperative Oncology Group; HMA, hypomethylating agent

23

Treatment-emergent Adverse Events (AE)

AEs in ≥30% of patients*	Any grade	Grade 3/4
Any event, n (%)	82 (100)	79 (96)
Nausea	57 (70)	2 (2)
Diarrhea	40 (49)	2 (2)
Hypokalemia	39 (48)	12 (15)
Fatigue	35 (43)	6 (7)
Febrile neutropenia	35 (43)	34 (42)
Thrombocytopenia	31 (38)	31 (38)
Constipation	29 (35)	0
Decreased appetite	28 (34)	5 (6)
WBC count decreased	28 (34)	28 (34)
Hypomagnesemia	27 (33)	1 (1)
Vomiting	25 (31)	3 (4)
Hypophosphatemia	24 (29)	13 (16)
Neutropenia	22 (27)	22 (27)
Anemia	22 (27)	22 (27)

Serious AEs in ≥5% of patients	
Anemia	25 (31)
Febrile neutropenia	22 (27)
Pneumonia	8 (10)
Sepsis	6 (7)

* AEs were also listed if they were Grade \geq 3 and occurred in \geq 10% of patients

Response Rates by Key Patient Subgroups

Percentage of patients with CR/CRi shown at the top of each bar

For patients with CR/CRi Median time to first response **1.4 months** (range 0.8–14.9) Median time to best response **2.8 months** (range 0.8–22.4)

Overall Survival by Response

26

Outcomes According to Molecular Drivers of AML

Cytogenetics	ORR (CR + CRi)	Median OS, mo
Intermediate risk n = 37	28 (76%)	15.7
Adverse risk n = 19	9 (47%)	5.7
NPM1 n = 7*	7 (100%)	NR
CEBPA ^{biallelic} n = 3	3 (100%)	NR
Chromatin- spliceosome n = 22	15 (68%)	11.4
TP53-aneuploidy n = 20	10 (50%)	6.5

OS in Patients

*Four of the 7 NPM1 patients have FLT3 mutations (3: ITD, 1: TKD).

AML, acute myeloid leukemia; CR, complete remission; CRi, CR with incomplete blood count recovery; DOR, duration of response; DS, discontinued prior to assessment; NR, not reached; OS, overall survival; PD, progressive disease; RD, resistant disease.

Study Overview (HMA combined with Venetoclax)

Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia

Courtney D. DiNardo, Keith Pratz, Vinod Pullarkat, Brian A. Jonas, Martha Arellano, Pamela S. Becker, Olga Frankfurt, Marina Konopleva, Andrew H. Wei, Hagop M. Kantarjian, Tu Xu, Wan–Jen Hong, Brenda Chyla, Jalaja Potluri, Daniel A. Pollyea, and Anthony Letai

Blood 2018 :blood-2018-08-868752; doi: https://doi.org/10.1182/blood-2018-08-868752

CR/CRi rate of 67% in older AML patients with venetoclax + HMAs

Median DOR was 11.3 months and median OS was 17.5 months

400 mg venetoclax was the recommended phase 2 dose

Patient Characteristics

	Venetoclax 400 mg + Aza	Venetoclax 400 mg + Dec
Characteristic	n = 84	n = 31
Median age (range), years	75 (61–90)	72 (65–86)
≥75 years, n (%)	42 (50)	8 (26)
ECOG Performance Score [*] , n (%)		
0-1	58 (69)	27 (87)
2	24 (29)	4 (13)
Baseline bone marrow blasts, n (%)		
<30%	24 (29)	7 (23)
≥31-<50%	29 (34)	14 (45)
≥50%	31 (37)	10 (30)
Mutational Analyses, mutated/tested (%)		
TP53	20/74 (27)	7/22 (32)
IDH1/2	20/74 (27)	5/22 (23)
FLT3	11/74 (15)	3/22 (14)
NPM1	14/74 (19)	3/22 (14)
Cytogenetic risk [†] , n (%)		
Intermediate	50 (60)	16 (52)
Poor	33 (39)	15 (48)
Secondary AML, n (%)	21 (25)	9 (29)

* Two patients treated with azacitidine had an ECOG performance score of 3

+ As defined by the National Comprehensive Cancer Network (NCCN) risk categorization v.2014; 1 patient in Aza cohort had no mitosis; favorable risk excluded by FISH

Response Rates of CR/CRi by Combination

Ven + Aza	Ven + Dec
1.2 (0.7–5.5)	1.9 (0.9–4.6)
6.0 (1–32)	6.0 (1–29)
	Ven + Aza 1.2 (0.7–5.5) 6.0 (1–32)

Response Rates of CR/CRi by Patient Subgroups

Duration of Response After Achieving CR/CRi

Venetoclax with HMAs induces rapid, deep, and durable responses in older patients with AML | ASH 2018

Overall Survival

<u>Median Follow-up</u>

Venetoclax + azacitidine **14.9 months** (range 0.4–42.0) Venetoclax + decitabine **16.2 months** (range 0.7–42.7)

Venetoclax with HMAs induces rapid, deep, and durable responses in older patients with AML | ASH 2018

Overall Survival: CR/CRi vs. Other Responses

Other responses grouped were: Morphological leukemia free state (MLFS), progressive disease, resistan**Bd**isease

Venetoclax with HMAs induces rapid, deep, and durable responses in older patients with AML | ASH 2018

Isocitrate dehydrogenase (IDH) mutations as a target in AML

- Somatic IDH1 and IDH2 mutations result in accumulation of oncometabolite 2-HG
 - → epigenetic changes, impaired cellular differentiation
- mIDH identified in multiple solid and hematologic tumors
 - mIDH1 in ~6–10% of patients with AML
- Ivosidenib (AG-120): a first-in-class, oral, potent, reversible, targeted inhibitor of the mIDH1 enzyme
 - FDA approved on July 20, 2018 for the treatment of adult patients with R/R AML with a susceptible IDH1 mutation as detected by an FDA-approved test
 - under evaluation in multiple clinical trials as a single agent and in combinations

OLDER PATIENTS WITH PREVIOUSLY UNTREATED *IDH2*-POSITIVE AML WERE ELIGIBLE TO ENROLL IN PHASE 1 OF THE PIVOTAL STUDY

- A subgroup of older patients with <u>previously untreated</u> mIDH2 AML received enasidenib monotherapy in the phase 1 portions of the AG221-C-001 study*
- Patients:
 - Untreated m/DH2 AML
 - ECOG PS 0-2
 - Not candidates for standard treatment
- treatment //day D ht cycles All Patients in AG221-C-001 N = 345 R/R AML: n = 281 MDS: n = 17 Other: n = 9

- Enasidenib dosing:
 - Dose-escalation: 50-650 mg/day
 - Expansion phase: 100 mg QD
 - Continuous 28-day treatment cycles

TREATMENT-RELATED TREATMENT-EMERGENT ADVERSE EVENTS (TEAEs)

- 2 patients discontinued because of a treatment-related TEAE (cardiac tamponade, thrombocytopenia)
- Serious treatment-related TEAEs in >1 patient were IDH differentiation syndrome (n=4) and tumor lysis syndrome (n=2)

	Previously Untreated m <i>IDH2</i> AML N=38		All study patients N=239 ¹
Treatment-related TEAES	Any grade (≥10% of pts)	Grade 3-4	Grade 3-4
	n (%)		n (%)
Hyperbilirubinemia	12 (32)	5 (13)	29 (12)
Nausea	9 (24)	0	5 (2)
Thrombocytopenia	7 (18)	6 (16)	15 (6)
Fatigue	7 (18)	1 (3)	6 (3)
Decreased appetite	7 (18)	1 (3)	NR
Rash	7 (18)	0	NR
Anemia	6 (16)	5 (13)	12 (5)
IDH differentiation syndrome	4 (11)	4 (11)	15 (6)
Tumor lysis syndrome	4 (11)	3 (8)	8 (3)
ECG QT prolonged	4 (11)	1 (3)	NR
Dysgeusia	4 (11)	0	NR
Peripheral neuropathy	4 (11)	0	NR
Vomiting	4 (11)	0	NR

Data cutoff: 1 Sept 2017

ECG, electrocardiogram; IDH-DS, IDH-inhibitor-associated differentiation syndrome; NR, not reported; pts, patients; R/R AML, relapsed/refractory AML; TEAE, treatment-emergent adverse event

RESPONSE

• Median number of enasidenib treatment cycles: 6.5 (range 1-35)

	Previously Untreated m <i>IDH2</i> AML N=38
Overall response (CR, CRi/CRp, PR, MLFS), n (%)	12 (32)
ORR 95%CI	17.5%, 48.7%
Best response, n (%)	
CR	7 (18)
CRi/CRp	1 (3)
PR	2 (5)
MLFS	2 (5)
Stable Disease*, n (%)	18 (47)
Disease Progression, n (%)	1 (3)
Not evaluable, n (%)	7 (18)

*Failure to achieve a response but not meeting criteria for progressive disease for a period of ≥8 weeks Data cutoff: 1 Sept 2017 CR, complete remission; CRi/CRp, CR with incomplete neutrophil or platelet recovery; MLFS, morphologic leukemia-free state; ORR, Overall response rate; PR, partial remission;

Overall Survival Overall Survival: Responders 1 0,9 0,9 0,8 0,8 0,7 0,7 Median OS NR [95%CI 10.4 months, NR] 0,6 0,6 Survival Survival Median OS 11.3 months [95%Cl 5.7, 17.0] 0,5 0,5 0,4 0,4 0,3 0,3 0,2 0,2 0,1 0,1 0 0 12 24 30 12 6 18 36 6 18 24 30 36 0 0 Months Months

Data cutoff: 1 Sept 2017 NR, not reached; OS, overall survival Leukemia https://doi.org/10.1038/s41375-018-0312-9

ARTICLE

Acute myeloid leukemia

Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome

Jorge E. Cortes¹ · Florian H. Heidel^{2,14} · Andrzej Hellmann³ · Walter Fiedler⁴ · B. Douglas Smith⁵ · Tadeusz Robak⁶ · Pau Montesinos ^{7,8} · Daniel A. Pollyea ⁹ · Pierre DesJardins¹⁰ · Oliver Ottmann¹¹ · Weidong Wendy Ma¹² · M. Naveed Shaik¹² · A. Douglas Laird¹² · Mirjana Zeremski¹² · Ashleigh O'Connell¹² · Geoffrey Chan¹² · Michael Heuser¹³

Received: 11 October 2018 / Accepted: 2 November 2018 © The Author(s) 2018. This article is published with open access

Cytarabine ± Glasdegib in AML and MDS Phase 2 Study Design

N=132 Stratification by good/intermediate vs poor cytogenetic risk

¹Kantarjian H et al. *Cancer* 2006;106(5):1090-8.

Cytarabine ± Glasdegib in AML and MDS Patient Characteristics and Treatment Duration

Characteristic	LDAC + Glasdegib	LDAC
Randomized, N	88	44
Treated, n	84	41
Age, median (range) yrs	77 (63–92)	75 (58–83)
Diagnosis, n (%)		
AML	78 (89)	38 (86)
MDS	10 (11)	6 (14)
Cytogenetic risk, n (%)		
Good / Intermediate	55 (63)	27 (61)
Poor	33 (38)	17 (39)
Treatment duration median (range), days	83 (3–870)	47 (6–239)

Cytarabine ± Glasdegib in AML and MDS Overall Survival

Danke für die Aufmerksamkeit Fragen?

